Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Neurotoxicology ; 101: 117-127, 2024 Mar.
Article En | MEDLINE | ID: mdl-38423185

The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4 mg/g diet), Hesperetin (0.2 and 0.4 mg/g diet), and Hesperidin (0.1 and 0.4 mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.


Hesperidin , Parkinson Disease , Parkinsonian Disorders , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Drosophila melanogaster , Hesperidin/pharmacology , Hesperidin/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Flavonoids/pharmacology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/prevention & control , Phenotype , Monoamine Oxidase/metabolism , RNA, Messenger/metabolism
2.
Mol Neurobiol ; 61(3): 1225-1236, 2024 Mar.
Article En | MEDLINE | ID: mdl-37698834

Type 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer's disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we used Drosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7 days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher than two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies: Abl tyrosine kinase (Abl), bruchpilot (Brp), minibrain (Mnb), shaker (Sh), and gilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of the Tyrosine hydroxylase (Ple) and Dopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work, we present promising biomarkers to investigate molecular networks shared between T2DM and AD.


Alzheimer Disease , Diabetes Mellitus, Type 2 , Animals , Drosophila melanogaster/metabolism , Dopamine/metabolism , Memory Disorders/genetics , Diet , Sugars/metabolism , Sugars/pharmacology
3.
Biochim Biophys Acta Gen Subj ; 1867(10): 130446, 2023 10.
Article En | MEDLINE | ID: mdl-37619690

BACKGROUND: Methylmercury (MeHg) and ethylmercury (EtHg) are potent toxicants affecting the environment and human healthy. In this way, the present study aimed to investigate and compare the effects of MeHg and EtHg exposure on human peripheral blood mononuclear cells (PBMCs), which are critical components of the mammalian immune system. METHODS: PBMCs were exposed to 2.5 µM MeHg or 2.5 µM EtHg. The number of cells and incubation times varied according to each assay. After exposures, the PBMCs were subjected to different evaluations, including cell viability, morphological aspects, cell cycle phases, indices of apoptosis and necrosis, reactive species (RS) production, and mitochondrial functionality. RESULTS: PBMCs exposed to EtHg were characterized by decreased viability and size, increased granularity, RS production, and apoptotic indexes accompanied by an intensification of Sub-G1 and reduction in G0-G1 cell cycle phases. Preceding these effects, we found mitochondrial dysfunctions, namely a reduction in the electron transport system related to mitochondrial complex I. In contrast, PBMCs exposed to MeHg showed only reduced viability. By ICP-MS, we found that PBMCs treated with EtHg accumulated Hg + levels ∼1.8-fold greater than MeHg-exposed cells. CONCLUSIONS AND SIGNIFICANCE: Taken together, our findings provide important insights about mercury immunotoxicity, showing that EtHg is more immunotoxic to human PBMCs than MeHg.


Mercury , Methylmercury Compounds , Animals , Humans , Methylmercury Compounds/toxicity , Leukocytes, Mononuclear , Mitochondria , Oxidative Stress , Mammals
4.
Vaccines (Basel) ; 11(7)2023 Jul 10.
Article En | MEDLINE | ID: mdl-37515038

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the COVID-19 pandemic, a global public health problem. Despite the numerous studies for drug repurposing, there are only two FDA-approved antiviral agents (Remdesivir and Nirmatrelvir) for non-hospitalized patients with mild-to-moderate COVID-19 symptoms. Consequently, it is pivotal to search for new molecules with anti-SARS-CoV-2 activity and to study their effects in the human immune system. Ebselen (Eb) is an organoselenium compound that is safe for humans and has antioxidant, anti-inflammatory, and antimicrobial properties. Diphenyl diselenide ((PhSe)2) shares several pharmacological properties with Eb and is of low toxicity to mammals. Herein, we investigated Eb and (PhSe)2 anti-SARS-CoV-2 activity in a human pneumocytes cell model (Calu-3) and analyzed their toxic effects on human peripheral blood mononuclear cells (PBMCs). Both compounds significantly inhibited the SARS-CoV-2 replication in Calu-3 cells. The EC50 values for Eb and (PhSe)2 after 24 h post-infection (hpi) were 3.8 µM and 3.9 µM, respectively, and after 48 hpi were 2.6 µM and 3.4 µM. These concentrations are safe for non-infected cells, since the CC50 values found for Eb and (PhSe)2 on Calu-3 were greater than 200 µM. Importantly, the concentration rates tested on viral replication were not toxic to human PBMCs. Therefore, our findings reinforce the efficacy of Eb and demonstrate (PhSe)2 as a new candidate to be tested in future trials against SARS-CoV-2 infection/inflammation conditions.

5.
Neurotoxicology ; 95: 23-34, 2023 03.
Article En | MEDLINE | ID: mdl-36592898

The current study aimed to investigate whether kaempferol (KMP), the major bioactive component of green leafy vegetables, could counteract the toxicity elicited by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in Drosophila melanogaster or not. First, we performed a dose-response curve, where adult wild-type flies were fed on diet-containing different concentrations of KMP throughout their lifespan. Afterward, flies were fed on a diet containing MPTP (500 µM) and KMP (20 and 40 µM) for 7 days. The MPTP- fed flies presented a higher mortality rate, lower emergence rate, locomotor deficits, and disruption in circadian rhythm when compared to the control. MPTP exposure induced severe oxidative stress, which was marked by reduction in thiol content, overproduction of reactive species, lipid and protein oxidation, and disruption of enzymes of antioxidant and neurotransmission pathways. MPTP also compromised the mitochondrial dynamics and respiration of flies, affecting the electron transport chain, oxidative phosphorylation, and fusion/fission processes. Besides extending per se the lifespan of flies, KMP counteracted the toxic effects of MPTP on the circadian cycle, survival, climbing, and hatching rates. KMP was also effective in restoring the activities of acetylcholinesterase (AChE) and monoamine oxidase (MAO) enzymes, as well as in normalizing the levels of all oxidant/antioxidant markers disrupted in MPTP-fed flies. Indeed, KMP reestablished the mitochondrial functionality in MPTP- fed flies, restoring the electron transport system linked to mitochondrial complex I and II, and rescuing the mRNA transcription of genes associated with mitochondrial fusion and fission, namely OPA-1 (Optic atrophy 1) and DRP-1 (Dynamin related protein 1). Our results showed the efficacy of KMP in hindering the toxicity induced by MPTP in D. melanogaster and suggest that the mitoprotective action of flavonoid may be boosting its anti-parkinsonism activity in the model. Besides, the study showed that wild-type strains of D. melanogaster proved to be reproducible in vivo model to mimic parkinsonian phenotypes through exposure to the neurotoxin MPTP.


Drosophila Proteins , Drosophila melanogaster , Animals , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Antioxidants/pharmacology , Acetylcholinesterase , Kaempferols/pharmacology , Transcription Factors , Homeodomain Proteins/pharmacology
6.
Environ Toxicol Pharmacol ; 93: 103870, 2022 Jul.
Article En | MEDLINE | ID: mdl-35523392

Manganese (Mn) is an essential metal for living organisms. However, the excess of Mn can be toxic, especially for the central nervous system. Herein, we used adult zebrafish as model organism to investigate the relationship of an environmentally relevant Mn exposure with the onset of neurobehavioral disturbances and brain biochemical alterations. Fish were exposed to MnCl2 at 0.5, 2.0, 7.5 and 15.0 mg/L for 96 h, and after submitted to trials for examining exploratory, locomotor and anxiety-related behaviors. The neurobehavioral parameters were followed by the analyses of cell viability, Mn accumulation and acetylcholinesterase activity in the brain, and whole-body cortisol levels. By Novel tank, Light dark and Social preference test, we found that the exposure to Mn, along with locomotor deficits induced anxiety-like phenotypes in zebrafish. Most of these behavioral changes were evoked by the highest concentrations, which also caused cell viability loss, higher accumulation of Mn and increased AChE activity in the brain, and an increase in the whole-body cortisol content. Our findings demonstrated that zebrafish are quite sensitive to levels of Mn found in the environment, and that the magnitude of the neurotoxic effects may be associated with the levels of manganese accumulated in the brain. Interestingly, we showed that Mn exposure in addition to motor deficits may also cause psychiatric abnormalities, namely anxiety.


Manganese , Zebrafish , Acetylcholinesterase , Animals , Anxiety/chemically induced , Behavior, Animal , Hydrocortisone , Manganese/toxicity , Phenotype , Zebrafish/physiology
7.
Article En | MEDLINE | ID: mdl-34710619

Methylmercury (MeHg) and ethylmercury (EtHg) are important mercury organic forms in terms of human poisoning. Since the comparative effects of compounds are mainly in vitro, this study was designed to investigate the toxicities induced by MeHg and EtHg in an in vivo study using adult Drosophila melanogaster (D. melanogaster). Firstly, we performed a survival curve, where the flies were fed on a medium containing MeHg and EtHg at concentrations ranging from 2.5 to 200 µM, until the end of their lifespan. After that, the concentrations 25 and 200 µM of MeHg and EtHg were chosen to be tested in a short exposure for 5 days. The analysis of survival by Kaplan-Meier plot revealed that all concentrations of MeHg and EtHg reduced significantly the lifespan of the flies. Short exposure to both concentrations of MeHg and EtHg impaired the ability of flies in the climbing assay and induced lipid peroxidation. Only the flies exposed to the highest concentration had viability loss, thiol depletion, and increased reactive species (RS) and Hg levels in the whole body. Our findings indicate that MeHg and EtHg exhibit similar toxic effects in vivo, and that oxidative stress is a phenomenon behind the toxicity of both mercurials. The data obtained also reinforce the use of D. melanogaster as a useful organism for basic toxicological research.


Ethylmercury Compounds/toxicity , Methylmercury Compounds/toxicity , Motor Activity/drug effects , Animals , Dose-Response Relationship, Drug , Drosophila melanogaster , Drug Administration Schedule , Toxicity Tests
8.
Chem Biol Interact ; 351: 109677, 2022 Jan 05.
Article En | MEDLINE | ID: mdl-34634269

Methylglyoxal (MG) is a reactive metabolite derived from different physiological pathways. Its production can be harmful to cells via glycation reactions of lipids, DNA, and proteins. But, the effects of MG on mitochondrial functioning and bioenergetic responses are still elusive. Then, the effects of MG on key parameters of mitochondrial functionality were examined here. Isolated rat liver mitochondria were exposed to 0.1-10 mM of MG to determine its toxicity in the mitochondrial viability, membrane potential (Δψm), swelling and the superoxide (O2•-) production. Besides, mitochondrial oxidative phosphorylation parameters were analyzed by high-resolution respiratory (HRR) assay. In this set of experiments, routine state, PM state (pyruvate/malate), oxidative phosphorylation (OXPHOS), LEAK respiration, electron transport system (ETS) and oxygen residual (ROX) states were evaluated. HRR showed that PM state, OXPHOS CI-Linked, LEAK respiration, ETS CI/CII-Linked and ETS CII-Linked/ROX were significantly inhibited by MG exposure. MG also inhibited the complex II activity, and decreased Δψm and the viability of mitochondria. Taken together, our data indicates that MG is an inductor of mitochondrial dysfunctions and impairs important steps of respiratory chain, effects that can alter bioenergetics responses.


Enzyme Inhibitors/toxicity , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Pyruvaldehyde/toxicity , Animals , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex II/antagonists & inhibitors , Male , Membrane Potential, Mitochondrial/drug effects , Rats, Wistar
9.
Article En | MEDLINE | ID: mdl-34192612

Type 2 Diabetes mellitus (T2DM) is a multifactorial and polygenic disorder with the molecular bases still idiopathic. Experimental analyses and tests are quite limited upon human samples due to the access, variability of patient's conditions, and the size and complexity of the genome. Therefore, high-sugar diet exposure is commonly used for modeling T2DM in non-human animals, which includes invertebrate organisms like the fruit fly Drosophila melanogaster. Interestingly, high-sugar diet (HSD) induces delayed time for pupation and reduced viability in fruit fly larvae hatched from a 30% sucrose-containing medium (HSD-30%). Here we carried out an mRNA-deep sequencing study to identify differentially transcribed genes in adult fruit fly hatched and reared from an HSD-30%. Seven days after hatching, flies reared on control and HSD-30% were used to glucose and triglyceride level measurements and RNA extraction for sequencing. Remarkably, glucose levels were about 2-fold higher than the control group in fruit flies exposed to HSD-30%, whereas triglycerides levels increased 1.7-fold. After RNA-sequencing, we found that 13.5% of the genes were differentially transcribed in the dyslipidemic and hyperglycaemic insects. HSD-30% up-regulated genes involved in ribosomal biogenesis (e.g. dTOR, ERK and dS6K) and down-regulated genes involved in energetic process (e.g. Pfk, Gapdh1, and Pyk from pyruvate metabolism; kdn, Idh and Mdh2 from the citric acid cycle; ATPsynC and ATPsynẞ from ATP synthesis) and insect development. We found a remarkable down-regulation for Actin (Act88F) that likely impairs muscle development. Moreover, HSD-30% up-regulated both the insulin-like peptides 7 and 8 and down-regulated the insulin receptor substrate p53, isoform A and insulin-like peptide 6 genes, whose functional products are insulin signaling markers. All these features pointed together to a tightly correlation of the T2DM-like phenotype modeled by the D. melanogaster and an intricate array of phenomena, which includes energetic processes, muscle development, and ribosomal synthesis as that observed for the human pathology.


Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Diet, Carbohydrate Loading/adverse effects , Dietary Sugars/adverse effects , Drosophila melanogaster/genetics , Transcriptome/drug effects , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Drosophila melanogaster/drug effects , Drosophila melanogaster/metabolism , Gene Expression Regulation , Glucose/analysis , Humans , Oxidative Stress , Triglycerides/metabolism
10.
J Trace Elem Med Biol ; 60: 126476, 2020 Jul.
Article En | MEDLINE | ID: mdl-32142958

BACKGROUND: Selenoproteins are selenocysteine (Sec)-containing proteins that exhibit numerous physiological functions, mainly antioxidative activities. Studies have suggested that several human selenoproteins play an important role in tumor initiation and progression, including melanoma. METHODS: Using RNA-seq data set from Sequence Reads Archive (SRA) experiments published at the National Center for Biotechnology Information (NCBI), we determined and compared the transcriptional levels of the 25 selenoproteins-coding sequences found in 16 human-derived melanoma cell lines and compared to four melanocyte controls. RESULTS: 15 selenoprotein-coding genes were found to be expressed in melanoma and normal melanocyte cells, and their mRNA levels varied among the cell lines. All melanoma cells analyzed with BRAF or NRAS mutations presented upregulated levels of SELENOI, TXNRD1, and SELENOT transcripts and downregulated levels of SELENOW and SELENON transcripts in comparison with melanocytes controls. Moreover, SELENOW, SELENON, SELENOI, TXNRD1, and SELENOT-coding transcripts were affected when BRAF-mutated A375 cells were treated with CPI203, A771726 or Vorinostat drugs. CONCLUSION: Our results indicate that melanoma cells can modify, in a different manner, the selenoprotein transcript levels, as a possible mechanism to control tumor progression. We suggest that the usage of diet and supplements containing selenium should be carefully used for patients with melanoma.


Selenoproteins/genetics , Skin Neoplasms/genetics , Thioredoxin Reductase 1/genetics , Transcription, Genetic/genetics , Cell Line, Tumor , Humans , Melanocytes/pathology , Melanoma/pathology , Selenoproteins/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Thioredoxin Reductase 1/metabolism
11.
Environ Toxicol Pharmacol ; 72: 103264, 2019 Nov.
Article En | MEDLINE | ID: mdl-31550595

Vinylcyclohexene (VCH) is an environmental contaminant well known for its ovotoxicant effects in several organisms. However, the mechanisms underlying the toxicity of VCH as well as its harmful effects toward other organs are until unclear. In this work, we assess some endpoint signals of toxicity induced by volatilized VCH exposure using nymphs of the lobster cockroach Nauphoeta cinerea. Nymphs were exposed to VCH via inhalation for 70 days. The levels of volatilized VCH were quantified by headspace gas chromatography and the concentration varied between 3.41 and 7.03 nmol/µl. VCH inhalation caused a reduction of 35% in the survival rate of the exposed animals. Nymphs exposed to volatilized VCH for 35 and 70 days had a reduction in the body weight gain of 1.8- and 2.6-fold, respectively with a reduction in dissected head, fat body, and maturing reproductive organs. The exposure did not change water consumption, excepting on the 20th day (with a 3-fold change) and decreased the food intake significantly. Regarding biochemical markers, we found that the activity of GST from the dissected organs was increased by volatilized VCH after both 35 and 70 days of exposure. The fat body presented the most prominent GST activity especially after 35 days of exposure with 1.6-fold higher than the control group. Exposure also caused an increase in RS levels in the fat body of 1.35-fold and 1.47-fold after 35 and 70 days, respectively and did not affect the activity of the AChE from the head. Our findings support the harmful impact of volatilized VCH inhalation, highlighting the cockroach N.cinerea as a valuable insect model to investigate environmental toxicants.


Cockroaches/drug effects , Cyclohexenes/toxicity , Nymph/drug effects , Administration, Inhalation , Animals , Cockroaches/enzymology , Fat Body/drug effects , Fat Body/enzymology , Glutathione Transferase/metabolism , Nymph/enzymology , Volatilization
12.
Sci Eng Ethics ; 25(4): 1037-1055, 2019 08.
Article En | MEDLINE | ID: mdl-29404974

In Brazil, the CNPq (National Council for Scientific and Technological Development) provides grants, funds and fellowships to productive scientists to support their investigations. They are ranked and categorized into four hierarchical levels ranging from PQ 1A (the highest) to PQ 1D (the lowest). Few studies, however, report and analyse scientific productivity in different sub-fields of Biomedical Sciences (BS), e.g., Biochemistry, Pharmacology, Biophysics and Physiology. In fact, systematic comparisons of productivity among the PQ 1 categories within the above sub-fields are lacking in the literature. Here, the scientific productivity of 323 investigators receiving PQ 1 fellowships (A to D levels) in these sub-fields of BS was investigated. The Scopus database was used to compile the total number of articles, citations, h-index values and authorship positions (first-, co- or last-listed author) in the most cited papers by researchers granted CNPq fellowships. We found that researchers from Pharmacology had the best performance for all of the parameters analysed, followed by those in Biochemistry. There was great variability in scientific productivity within the PQ 1A level in all of the sub-fields of BS, but not within the other levels (1B, 1C and 1D). Analysis of the most cited papers of PQ 1(A-D) researchers in Pharmacology revealed that the citations of researchers in the 1C and 1D levels were associated with publications with their senior supervisors, whereas those in the 1B level were less connected with their supervisors in comparison to those in 1A. Taken together, these findings suggest that the scientific performance of PQ 1A researchers in BS is not homogenous. In our opinion, parameters such as the most cited papers without the involvement of Ph.D. and/or post-doctoral supervisors should be used to make decisions regarding any given researcher's fellowship award level.


Bibliometrics , Biological Science Disciplines/classification , Biomedical Research/classification , Biomedical Research/economics , Biomedical Research/standards , Research Personnel/classification , Research Support as Topic , Authorship/standards , Biological Science Disciplines/economics , Brazil , Databases, Bibliographic , Efficiency , Female , Humans , Male , Research Personnel/economics , Research Personnel/standards
13.
Toxicol In Vitro ; 55: 33-42, 2019 Mar.
Article En | MEDLINE | ID: mdl-30447388

Methylglyoxal (MG) is a α-dycarbonyl compound derived mainly from glycolysis, whose accumulation is harmful for cells and tissues. Here, we evaluated the cytotoxic effects induced by MG in leukocytes after an acute exposure, measuring as endpoints of toxicity some markers of oxidative stress and programmed cell death. Human leukocytes were isolated and incubated with MG at concentrations ranging from 0.1 to 10 mM for 2.5 h, and subsequently prepared for assays based in flow cytometry, gene expression and immunoreactivity profile. The cells exposed to higher concentrations of MG had significant loss of viability, increased reactive species (RS) production and apoptosis/necrosis rate. These phenomena were accompanied by morphological changes (increased size and granularity) and disruption in mRNA expression of antioxidant, apoptotic and glycation-responsive genes, particularly: Nrf2 (Nuclear factor (erythroid-derived 2)-like 2), SOD1 (CuZn-superoxide dismutase), SOD2 (Mn-superoxide dismutase), GSR (glutathione-S-reductase), BAX (BAX-associated X protein), BCL-2 (BCL-2-associated X protein), AIF (apoptosis inducing factor), GLO-1 (glyoxalase-1) and RAGE (receptor for advanced glycation end products). The mRNA expression of CASP 9 and CASP 3 (caspase-9 and 3) as well as the immunoreactivity of proteins were not changed by MG. Collectively, our data provide evidence that MG activates programmed cell death pathways in leukocytes and that this effect seems to be associated with disturbances in cell redox signaling.


Leukocytes/drug effects , Pyruvaldehyde/toxicity , Adult , Apoptosis/physiology , Cell Death/drug effects , Cell Death/physiology , Female , Gene Expression Regulation/drug effects , Humans , Leukocytes/metabolism , Male , Young Adult
14.
J Trace Elem Med Biol ; 50: 240-248, 2018 Dec.
Article En | MEDLINE | ID: mdl-30262286

INTRODUCTION: The incorporation of selenium in the structure of nucleosides is a promising strategy to develop novel therapeutic molecules. OBJECTIVE: To assess the toxic effects of three AZT derivatives containing organoselenium moieties on human erythrocytes. METHODOLOGY: Freshly human erythrocytes were acutely treated with AZT and selenium derivatives SZ1 (chlorophenylseleno), SZ2 (phenylseleno) and SZ3 (methylphenylseleno) at concentrations ranging from 10 to 500 µM. Afterwards, parameters related to membrane damage, redox dyshomeostasis and eryptosis were determined in the cells. RESULTS: The effects of AZT and derivatives toward erythrocytes differed considerably. Overall, the SZ3 exhibited similar effect profiles to the prototypal AZT, without causing cytotoxicity. Contrary, the derivative SZ1 induced hemolysis and increased the membrane fragility of cells. Reactive species generation, lipid peroxidation and thiol depletion were also substantially increased in cells after exposure to SZ1. δ-ALA-D and Na+/K+-ATPase activities were inhibited by derivatives SZ1 and SZ2. Additionally, both derivatives caused eryptosis, promoting cell shrinkage and translocation of phosphatidylserine at the membrane surface. The size and granularity of erythrocytes were not modified by any compound. CONCLUSION: The insertion of either chlorophenylseleno or, in a certain way, phenylseleno moietes in the structure of AZT molecule was harmful to erythrocytes and this effect seems to involve a pro-oxidant activity. This was not true for the derivative encompassing methylphenylseleno portion, making it a promising candidate for pharmacological studies.


Azides/adverse effects , Erythrocytes/drug effects , Erythrocytes/metabolism , Selenium/metabolism , Zidovudine/adverse effects , Azides/chemistry , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Humans , Lipid Peroxidation/drug effects , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
15.
Environ Sci Pollut Res Int ; 25(30): 30557-30566, 2018 Oct.
Article En | MEDLINE | ID: mdl-30173384

Mammalian δ-aminolevulinate dehydratase (δ-ALA-D) is a metalloenzyme, which requires Zn(II) and reduced thiol groups for catalytic activity, and is an important molecular target for the widespread environmental toxic metals. The δ-ALA-D inhibition mechanism by metals of Group 10 (Ni, Pd, and Pt) and 11 (Cu, Ag, and Au) of the periodic table has not yet been determined. The objective of this study was to characterize the molecular mechanism of δ-ALA-D inhibition caused by the elements of groups 10 and 11 using in vitro (δ-ALA-D activity from human erythrocytes) and in silico (docking simulations) methods. Our results showed that Ni(II) and Pd(II) caused a small inhibition (~ 10%) of the δ-ALA-D. Pt(II) and Pt(IV) significantly inhibited the enzyme (75% and 44%, respectively), but this inhibition was attenuated by Zn(II) and dithiothreitol (DTT). In group 11, all metals inhibited δ-ALA-D with great potency (~ 70-90%). In the presence of Zn(II) and DTT, the enzyme activity was restored to the control levels. The in silico molecular docking data suggest that the coordination of the ions Pt(II), Pt(IV), Cu(II), Ag(I), and Au(III) with thiolates groups from C135 and C143 residues from the δ-ALA-D active site are crucial to the enzyme inhibition. The results indicate that a possible mechanism of inhibition of δ-ALA-D by these metals may involve the replacement of the Zn(II) from the active site and/or the cysteinyl residue oxidation.


Metals/chemistry , Porphobilinogen Synthase/antagonists & inhibitors , Porphobilinogen Synthase/metabolism , Aminolevulinic Acid , Animals , Dithiothreitol/pharmacology , Erythrocytes/metabolism , Humans , Molecular Docking Simulation , Oxidation-Reduction , Porphobilinogen Synthase/chemistry
16.
Can J Physiol Pharmacol ; 96(4): 359-365, 2018 Apr.
Article En | MEDLINE | ID: mdl-28881148

(-)-α-Bisabolol (BISA) is a sesquiterpene alcohol, which has several recognized biological activities, including anti-inflammatory, anti-irritant, and antibacterial properties. In the present study, we investigated the influence of BISA (5, 25, and 250 µmol/L) on rotenone (500 µmol/L)-induced toxicity in Drosophila melanogaster for 7 days. BISA supplementation significantly decreased rotenone-induced mortality and locomotor deficits. The loss of motor function induced by rotenone correlated with a significant change in stress response factors; it decreased thiol levels, inhibited mitochondria complex I, and increased the mRNA expression of antioxidant marker proteins such as superoxide dismutase (SOD), catalase (CAT), and the keap1 gene product. Taken together, our findings indicate that the toxicity of rotenone is likely due to the direct inhibition of complex I activity, resulting in a high level of oxidative stress. Dietary supplementation with BISA affected the expression of SOD mRNA only at a concentration of 250 µmol/L, and did not affect any other parameter measured. Our results showed a protective effect of BISA on rotenone-induced mortality and locomotor deficits in Drosophila; this effect did not correlate with mitochondrial complex I activity, but may be related to the antioxidant protection afforded by eliminating superoxide generated as a result of rotenone-induced mitochondrial dysfunction.


Drosophila melanogaster/drug effects , Protective Agents/pharmacology , Rotenone/toxicity , Sesquiterpenes/pharmacology , Animals , Catalase/genetics , Catalase/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Electron Transport Complex I/metabolism , Gene Expression Regulation/drug effects , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Monocyclic Sesquiterpenes , Motor Activity/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Survival Analysis
17.
Biomed Pharmacother ; 97: 1-8, 2018 Jan.
Article En | MEDLINE | ID: mdl-29080449

Peumus boldus (P. boldus) is a medicinal plant popularly used in the treatment of gastrointestinal disorders. P. boldus aqueous extract is rich in phenolic compounds and alkaloids that possess antiinflammatory and antioxidant effects. In the present study, the potential protective effect of P. boldus against Cu2+-induced toxicity was investigated. Adult Drosophila melanogaster were exposed to Cu2+ (1mM and 3mM) and/or P. boldus aqueous extract (5mg/mL) in the food during 4days. Cu2+-fed flies had impairment in the negative geotaxis performance (i.e. motor climbing capability) as well as a higher incidence of mortality when compared to the control group. P. boldus co-treatment afforded protection against the Cu2+-induced toxicity. Acetylcholinesterase (AChE) and glutathione S-transferase (GST) activity decreased significantly in D. melanogaster after Cu2+ exposure. P. boldus co-exposure for 4days restored enzyme activities to control levels. In addition, Cu2+ exposure caused a significant increase in the mRNA levels of antioxidant enzymes, superoxide dismutase (Sod1), catalase (Cat), thioredoxin reductase (TrxR1) and nuclear factor erythroid 2-related factor 2 (Nrf2), as well as increased the mRNA levels of acetylcholinesterase (Ace). The expression of P-type ATPase (Atp7A) and copper uptake protein 1 (Ctr1A) mRNAs were up-regulated in D. melanogaster exposed to Cu2+. The co-treatment with P. boldus blunted Cu2+-induced up-regulation of Atp7A and down-regulated Ctr1A mRNA expression. These findings suggest that P. boldus extracts reduce Cu2+-induced toxicity but not Cu2+ absorption in D. melanogaster. Consequently, P. boldus can be a potential therapeutical alternative for modulating Cu2+-associated toxicity.


Copper/toxicity , Oxidative Stress/drug effects , Peumus , Plant Extracts/pharmacology , Animals , Copper/metabolism , Drosophila melanogaster , Oxidative Stress/physiology , Plant Extracts/isolation & purification , Plant Leaves , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/biosynthesis , Survival Rate/trends
18.
Toxicol Sci ; 160(1): 30-46, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-29036705

Considering a novel series of zidovudine (AZT) derivatives encompassing selenoaryl moieties promising candidates as therapeutics, we examined the toxicities elicited by AZT and derivatives 5'-(4-Chlorophenylseleno)zidovudine (SZ1); 5'-(Phenylseleno)zidovudine (SZ2); and 5'-(4-Methylphenylseleno)zidovudine (SZ3) in healthy cells and in mice. Resting and stimulated cultured human peripheral blood mononuclear cells (PBMCs) were treated with the compounds at concentrations ranging from 10 to 200 µM for 24 and/or 72 h. Adult mice received a single injection of compounds (100 µmol/kg, s.c.) and 72 h after administration, hepatic/renal biomarkers were analyzed. Resting and stimulated PBMCs exposed to SZ1 displayed loss of viability, increased reactive species production, disruption in cell cycle, apoptosis and increased transcript levels and production of pro-inflammatory cytokines. In a mild way, most of these effects were also induced by SZ2. AZT and SZ3 did not cause significant toxicity towards resting PBMCs. Differently, both compounds elicited apoptosis and S phase arrest in stimulated cells. AZT and derivatives administration did not change the body weight and plasma biochemical markers in mice. However, the absolute weight and organ-to-body weight ratio of liver, kidneys and spleen were altered in AZT, SZ1-, and SZ2-treated mice. Our results highlighted the involvement of derivatives SZ1 and SZ2 in redox and immunological dyshomeostasis leading to activation of apoptotic signaling pathways in healthy cells under different division phases. On the other hand, the derivative SZ3 emerged as a promising candidate for further viral infection/antitumor studies as a new effective therapy with low toxicity for immune cells and after acute in vivo treatment.


Antineoplastic Agents/toxicity , Chalcogens/toxicity , Leukocytes, Mononuclear/drug effects , Zidovudine/toxicity , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Behavior, Animal/drug effects , Cell Survival/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Inflammation Mediators/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Organ Size/drug effects , Reactive Oxygen Species/metabolism , Risk Assessment , S Phase Cell Cycle Checkpoints/drug effects , Zidovudine/analogs & derivatives
19.
Asian Pac J Trop Med ; 10(6): 539-543, 2017 Jun.
Article En | MEDLINE | ID: mdl-28756916

OBJECTIVE: To compare the effects of high-monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) against the metabolic disorders elicited by a high-cholesterol diet (HC) in rats. METHODS: Using in vivo dietary manipulation, rats were fed with different diets containing 4% soybean oil (cholesterol free diet) and 1% HC containing 12% olive oil (HC + OO) enriched with MUFA and 12% sunflower oil (HC + SO) enriched with PUFA for 60 d. Serum lipid levels and hepatic steatosis were evaluated after the treatment period. RESULTS: Comparatively, rats treated with HC + OO diet experienced a decrease in the serum LDL-C, VLDL-C and CT levels compared to those fed with HC + SO diet (P < 0.05). Otherwise, HC + OO provoked significant microvesicular steatosis situated in the hepatic acinar zone 1. CONCLUSIONS: HC + OO diet has high absorption velocity in the acinar zone 1 of liver compared to the HC + SO diet. Based on this, the reduction of the LDL-C, VLDL-C and CT serum levels in the animals treated with HC + OO diet may have been caused by the delay in the FA release to the blood.

20.
Biomed Pharmacother ; 89: 605-616, 2017 May.
Article En | MEDLINE | ID: mdl-28267671

Diet is a key component for development and longevity of organisms. Here, the fruit fly was used to evaluate the detrimental effects caused by consumption of high-sucrose diets (HSD), namely phenotypic responses linked to insulin signaling and oxidative stress. The protective effects of extracts from medicinal plants Syzygium cumini and Bauhinia forficata were investigated. HSD intake (15% and 30%) delayed the time to pupation and reduced the number of white pupae. In adult flies, the intake of diets was associated with mortality and increased levels of glucose+trehalose, triacylglycerols and hydrogen peroxide. Indeed, 30% HSD induced body-weight loss, mitochondrial dysfunction and changes in acetylcholinesterase, δ-aminolevulinate dehydratase and antioxidant enzymes activity. Catalase, superoxide dismutase, keap1, HSP70, dILP-5 and Insulin receptor mRNA levels were over-expressed in flies emerged from 30% HSD. The extract treatments blunted the developmental alterations elicited by diets. Syzygium cumini extract was more efficient than B. forficata in reducing hyperglycaemia, redox disturbances and the changes in mRNA expression of insulin receptor.


Bauhinia/chemistry , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/prevention & control , Dietary Sucrose/adverse effects , Hypoglycemic Agents/therapeutic use , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Syzygium/chemistry , Animals , Antioxidants/metabolism , Body Weight/drug effects , Carbohydrate Metabolism/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/metabolism , Diet , Drosophila melanogaster , Hydrogen Peroxide/metabolism , Insulin/metabolism , Insulin/physiology , Plant Leaves/chemistry , Receptor, Insulin/biosynthesis , Receptor, Insulin/genetics , Signal Transduction/drug effects
...